Type of presentation: Poster

LS-1-P-6076 The importance of Rapamycine usage on CD 44 and RHAMM expressions on breast cancer cell lines

Inan S.1, Temel M.1, Onal T.1, Oztatlici M.2, Cam F. S.2, Turkoz Uluer E.1, Ozbilgin K.1

1Celal Bayar University, Faculty of Medicine, Dept. of Histology&Embryology, Manisa, Turkey,
2Celal Bayar University, Faculty of Medicine, Dept. of Medical Genetics, Manisa, Turkey

Email of the presenting author: sevincinan@yahoo.com

CD44 is a member of superfamily hyaluronan (HA) binding proteins (HABPs) that play a role in cell adhesion, migration, invasion and survival. CD44 and Receptor for HA-mediated motility (RHAMM) are increased during tissue repair and carcinogenesis. Mammalian target of Rapamycin (mTOR) is a serine/threonine protein kinase which belongs to the phosphatidylinositol 3-kinase (PI3K) family. Rapamycine is a macrocyclic antibiotic, has been known to inhibit mTOR by destabilizing the mTOR-Raptor complex. The aim of this study was to examine the effects of Rapamycine on the distributions of CD44 and RHAMM expressions, using indirect immunohistochemistry and RT-PCR methods on non-invasive MCF-7 and invasive MDA-MB 231 breast cancer cell lines.

MCF-7 and MDA-MB231 cells were cultured in RPMI-1640 medium; containing 10% fetal bovine serum, 1% L-glutamine and 1% antibiotic solution in a humidity incubator at 37°C, containing 5% CO2. Cells were grown on cover slips and incubated with Rapamycine for 24 and 48 hours. Cells were immunostained with anti CD44 and anti-RHAMM primary antibodies using avidin-biotin-peroxidase method. Staining intensities were measured by using semi-quantitative method and ANOVA statistical test, to compare the results. The total RNA was extracted using EruX Universal RNA Purification Kit according to manufacturer’s instructions from MCF-7 and MDA-MB-231 cell lines. The cDNA synthesis from total RNA was performed using EurX dART RT-PCR Kit and RT-PCR process from obtained cDNAs was carried out using the Solis BioDyne qPCR Mix Plus.

It was observed that MCF-7 and MDA-MB 231 cells had strong CD44 and RHAMM immunostainings on their cell surfaces and in the cytoplasms, especially in mitotic cells (Figure 1-4). Decreased RHAMM immunoreactivity was detected on MCF-7 and MDA-MB 231 cells in Rapamycine treated groups while CD44 immunoreactivity was detected as decreased on only MDA-MB 231 cells. Compared the gene expression profile of CD44 and RHAMM genes, gene expressions were detected as relatively increased in MCF-7 cells than MDA-MB 231 cells. Decreased RHAMM expression was detected both MCF-7 and MDA-MB 231 cells, while CD44 expression was decreased only in MDA-MB 231 cells in treatment with Rapamycine in RT-PCR method.

CD44 and RHAMM suggested novel prognostic markers for breast cancers and hyaladherins could be used as a target for cancer therapy. Rapamycin is the most well studied mTOR inhibitor and this might be effective on invasive breast cancer treatments in addition to chemotherapy and/or radiotherapy.

References:

Acknowledgement: The material used in this project was funded by Scientific Research Committe of Celal Bayar University (Project Number: 2010-098)
Fig. 1: Immunoreactivity of CD 44 in MCF-7 cells

Fig. 2: Immunoreactivity of RHAMM in MCF-7 cells

Fig. 3: Immunoreactivity of CD 44 in MDA-MB-231 cells.

Fig. 4: Immunoreactivity of RHAMM in MDA-MB-231 cells.