Despite the continuous improvement in performance and stability achieved in the development of 4H-SiC MOSFETs, the 4H-SiC MOS system still suffers from heavy carrier trapping at the SiO$_2$/SiC interface. It was proposed that interface states at the SiC/SiO$_2$ interface are responsible for the electron trapping but also bulk traps in SiC. Furthermore it was suggested that the density of these bulk traps is significantly increased by ion implantation followed by high-temperature anneals. At the same time several groups provided experimental evidence for a carbon rich transition region on the SiC side of the interface with a C/Si ratio higher than one, and even, the width of the carbon-rich transition region was found inversely related to the peak field effect mobility. It was also proposed that C di-interstitial defects in the SiC side of the interface account for the increased bulk trap density in SiC.

In this work, differently processed n-channel planar MOSFETs manufactured on p-implanted n-type 4H-SiC epitaxial layers are considered. In particular, the effect of different channel implantation concentrations is examined. We have investigated the structural and chemical state of these MOSFETs focusing on the structural state and C distribution at the interface using high resolution scanning transmission electron microscopy (HR-STEM) (0.1 nm) and spatially resolved electron energy loss spectroscopy (STEM-EELS). The Si-L edge (100 eV), C-K edge (284 eV) and O-K edge (532eV) were collected in the same spectrum. The n-channel MOSFETs were investigated after FIB sample preparation.

Based on the relative compositions extracted from our EELS data, no C excess is evidenced for the samples neither in the SiC substrate nor in the SiO$_2$ gate oxide. However, modification of the Si-L ELNES was revealed and numerically exploited. In particular, fitting of the Si-L edge evolution across the interface with a linear combination of reference spectra (Si, SiC and SiO$_2$) evidences the presence of a « suboxide » over a short distance (less than 2 nm) at the SiC/SiO$_2$ interface. It implies a transition layer where the Si bonding is modified compared to what is observed either in SiC or in SiO$_2$. These results will be commented with regard to electron mobility measurements.

3. X. Shen et al., Appl. Phys. Lett. 98, 053507 (2011)

Acknowledgement: Work performed by the French-German Consortium MobiSiC, supported by the Programme Inter Carnot Fraunhofer from BMBF (G.A.312483). Thanks to the French METSA network for the access to the probe-corrected Ultra-STEM Nion microscope, Orsay, France.
Fig. 1: (a) Schematic cross-section of the studied MOSFETs; (b) STEM-EELS elemental maps across one 4H-SiC/SiO$_2$ interface and the corresponding C/Si ratio map; (c) STEM Bright-field (left) and STEM-HAADF (right) images across one 4H-SiC/SiO$_2$ interface.