For improvement of the properties of Li ion battery materials, a lot of modification processes such as surface modification have been examined [1]. To study the mechanism of these modification effects on the materials, it is very important to understand atomic structures and chemical states of modified materials. Analytical TEM measurement such as STEM-EELS method is a powerful tool for investigating local information about the sample [2].

In the present study, we prepared a cathode material (LiCoO$_2$) with small particle size by Pechini method in order to avoid damage from sample preparation such as ion beam milling and focused ion beam [3]. Surface modification was performed using the sol-gel method. Al oxide, Mg oxide, and Si oxide coating sample were prepared. And the samples dispersed on Cu mesh with carbon micro-grid were directly observed without thinning process. A TITAN2 G2 60-300 electron microscope (FEI), equipped with EDS(Super-X : Bruker) and EELS(Quantum : Gatan) was used for analytical TEM measurement. For EELS measurements, a monochromator was used to achieve higher energy resolution. ZLP was less than 0.3 eV with 0.05 eV/ch.

The EELS measurement around the Li K-edge is carried out for surface modified cathode materials. Although the Co M-edge completely overlaps Li K-edge, it becomes possible to obtain a sharp Li K-edge peak by using a monochromator. Using this benefit, we constructed an elemental map using the Li-K edge in nm-order spatial steps, and discussed the relationship between electrochemical properties and Li concentration distribution in the particle.

A schematic image of the EELS analysis of the Li K-edge is shown in Figure 1. Using the Co-M edge intensity, we constructed a Li-K/Co-M intensity ratio map [4]. The Li distribution in the LiCoO$_2$ particle after charge discharge cycle was drastically changed by the coating species, and the homogeneity of Li ion distribution as shown in figure 2 corresponded well with the trend of capacity retention after the cycling test.

Reference

Acknowledgement: This work was supported by the “Research and Development Initiative for Scientific Innovation of New Generation Battery (RISING project)” of the New Energy and Industrial Technology Development Organization (NEDO, Japan).
Fig. 1: (a) Schematic image for reconstruction of the map of Li-K/Co-M edge intensity map of bare LiCoO$_2$. (b) EELS spectra around Li-K edge for both the initial LiCoO$_2$ and the charged state (4.2V ~ Li$_{0.5}$CoO$_2$) are shown at bottom left. Difference spectrum of (initial LiCoO$_2$) – (4.2 V charged LiCoO$_2$) is shown at bottom right.

Fig. 2: Li-K/Co-M intensity map for 100th discharged (3.0-4.5V /Li metal) (a) bare LiCoO$_2$, (b) coated LiCoO$_2$ (MgO 1 wt%). The contrast of the image is normalized as the Li-K/Co-M intensity ratio. The x in the intensity scale corresponds to the x in Li$_x$CoO$_2$.