MS-8-P-2819 TEM investigations of In$_x$Ga$_{1-x}$As quantum dots in GaP

Selve S.1, Niermann T.2, Stracke G.3, Simke J.1, Strittmatter A.3, Bimberg D.3

1Technical University Berlin, Center for Electron Microscopy (ZELMI), Straße des 17. Juni 135, 10623 Berlin, Germany, 2Institut für Optik und Atomare Physik, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany, 3Institut für Festkörperphysik, Technical University Berlin, Hardenbergstraße 36, 10623 Berlin, Germany

Email of the presenting author: soeren.selve@tu-berlin.de

For optoelectronic applications, InGaAs quantum dots (QDs) in GaAs are a well-known materials system with various advantageous properties. However, the integration of GaAs-based devices with standard silicon based technologies remains challenging, because of the large lattice mismatch between these materials. Within the III-V semiconductors GaP allows a pseudomorphic growth on Si due to the small lattice mismatch of only 0.4%. But GaP is an indirect semiconductor, thus not very suitable for optoelectronic applications. Calculations show [1] that InGaAs-QDs in a GaP matrix allow radiative direct transitions under certain composition, size and strain conditions. Such QDs are a promising way to combine their advantageous optoelectronic properties with the structural advantages of GaP.

By metalorganic vapor-phase epitaxy, InGaAs-QDs were successfully grown within GaP. Prior to the InGaAs, a few monolayer (ML) thick GaAs-layer was deposited onto the substrate [2]. After the InGaAs-layer, the growth was interrupted for several seconds to allow for QD-formation. The subsequent deposition of a few ML GaAs facilitates a further strain engineering of these dots. A strong increase in the photoluminescence intensity of these structures indicate the switching from indirect to direct optical transitions within these dots [3].

As the quaternary InGaAsP system is zinc blende structure, the strong composition dependence of the {200}-structure factor (Fig. 1) can be exploited to investigate the structural properties of these dots within the TEM. Therefore, all samples were prepared as cross-section along <100> zone axis. For instance, zone-axis HRTEM combined with Fourier filtering of the (020)-coefficient reveals the shape of a truncated pyramid, which is typical for QDs (Fig. 2). Furthermore, fourier-filtered micrographs under two-beam conditions can be used to obtain further details of the structure. For instance, a comparison of a conventional (200) darkfield (intensity of diffracted beam) with the amplitude of the (200) image Fourier coefficient (amplitude of complex product between direct and diffracted beam) reveals an InP-enriched layer, 7 nm above the InGaAs-layer (Fig. 3). This enriched layer could be attributed to In segregation during growth.

References:
[3] G. Stracke, et al., Indirect and direct optical transitions in In0.5Ga0.5As/GaP quantum dots. Submitted

Acknowledgement: The authors acknowledge support from the DFG within SFB 787.
Fig. 1: Composition dependency of the (200) structure factor in Volts. Calculated using the isolated atom approximation and Doyle&Turner atom form factors.

Fig. 2: Real part of Fourier-filtered (020) reflection of HRTEM micrograph (a.u.). The filtered intensity is proportional and sensitive to compositional changes.

Fig. 3: Comparison of contrasts in conventional (200) darkfield micrograph (left) and Fourier-filtered (200)-coefficient of image under two-beam conditions-revealing an InP-enrichment due to segregation above the InGaAs-layer.