Addressing the urgent need to simultaneously acquire images with both high spatial resolution and high chemical sensitivity is of paramount importance to gain deeper understanding in physical and biological sciences. The Transmission Electron Microscopy (TEM) offers superior spatial resolution, but, the traditional analytical capabilities associated with electron microscopy such as the Energy Dispersive Spectroscopy (EDS) or Electron Energy-Loss Spectroscopy (EELS) are unfortunately inadequate for characterizing samples containing trace elements (at best 0.1 at. %) or for mapping isotopic distributions. On the other hand, Secondary Ion Mass Spectrometry (SIMS) provides extraordinary chemical sensitivity (down to ppm or even ppb) and high dynamic range, but, offers poor lateral resolution. An ex-situ combination of TEM and SIMS in an attempt to overcome the limitations of the techniques taken individually is prone to sample modifications and artefacts [1]. To overcome the intrinsic instrumental limitations, we have made an in-situ combination to complement the high-sensitivity of SIMS with the exceptional spatial resolution offered by TEM, by developing the correlative TEM-SIMS technique.

To determine the feasibility and to demonstrate the applications of the TEM-SIMS method, we have developed a prototype instrument for TEM-SIMS based correlative microscopy (Fig 1). The pole-pieces of a Tecnai F20 were specially modified to accommodate the SIMS technique. A FEI Magnum Ga⁺ FIB was attached to the TEM column to act as the primary ion column. The secondary ion extraction optics (extraction efficiency 90%) and a compact high-performance mass spectrometer were designed and developed in-house and are being continuously improved for optimal performance. A special sample holder which can be biased to high-voltages (±4.5 kV) was also developed in-house to enhance the collection efficiency of the secondary-ion extraction optics.

To enhance the low intrinsic yield of secondary ions for non-reactive primary ion beams such as Ga⁺ for the TEM-SIMS we use reactive gas flooding [2]. Specifically, the enhancement of negative secondary ion yields due to Cs flooding and of positive secondary ion yields with O₂ flooding were found to be up to four orders-of-magnitude. This enhancement of secondary ion yields leads to detection limits varying from 10⁻³ to 10⁻⁶ for a lateral resolution between 10 nm and 100 nm respectively (Fig 2).

The utility of the TEM-SIMS based correlative method will be demonstrated with the example of samples containing low Z elements, which are particularly challenging with traditional analytical methods like EDS or EELS.

References:
Fig. 1: Schematic of the TEM-SIMS setup (left) and the photo of the TEM-SIMS prototype instrument (right).

Fig. 2: Detection limit using a Ga$^+$ FIB with and without Cs$^+$ flooding vs. minimum feature size: example for the detection of Si.