Recently, various kinds of piezoelectric nanocomposite materials have been developed for self-powered devices, high power capacitors and large-scale flexible sensors [1-2]. The nanocomposite materials are usually fabricated by dispersing piezoelectric nanoparticles on the polymer matrix [3]. Therefore, control of uniformity and density of nanoparticles is a critical issue to fabricate the high quality nanocomposite materials. Besides, the piezoelectric properties of the nanoparticle itself determine the characteristics of the nanocomposite materials. For all that, there are little discussions about piezoelectric properties of a single crystalline nanoparticle. In this study, we investigated the piezoelectric properties of a single BaTiO$_3$ nanoparticle using the indentation technique. In other words, we measured the electrical response when a single crystalline nanoparticle was mechanically compressed by a conductive indenter. To make an accurate indentation of a single nanoparticle whose size is below a few hundred nm, we used a Hysitron PI95 TEM pico-indentation system. Also, we measured the mechanically induced currents on the BaTiO$_3$ nanoparticles with Keithley 6485 picoammeter. Figure 1 is a typical TEM image which shows a cross-sectional view of the indentation process of a BaTiO$_3$ nanoparticle. Controlling the displacements of the conductive diamond indenter, we could induce compressive stress to the single nanoparticle placed on the Au film coated Si wedge fixture and also measure the mechanical (load) induced on the particle (figure2) and electrical charge from the piezoelectric nanoparticle at the same time. From the TEM-indentation results, we calculated the piezoelectric coefficient value (d$_{33}$) of a single BaTiO$_3$ particle. The d$_{33}$ value of a 100nm size particle is about 800pC/N which is about 6 times larger than that of polycrystalline BaTiO$_3$ ceramics [4]. The present study reveals that size effect of nanoparticles on the enhancement of the piezoelectric property.

References

Acknowledgement: This work was supported by the Global Frontier R&D Program(2013-M3A6B1078872) on Center for Hybrid Interface Materials(HIM) funded by the Ministry of Science, ICT and Future Planning".(GFHIM- 2013M3A6B1078872)
Fig. 1: A cross-sectional view of the indentation process of a BaTiO₃ nanoparticle.

Fig. 2: Compressive load induced on a BaTiO₃ nanoparticle, (b) a cross-sectional view of the indentation process of a BaTiO₃ nanoparticle. The piezoelectric charge generated at surfaces (red dotted line) was measured.